
On Lazy Training in Differentiable Programming
Lénäıc Chizat3, Édouard Oyallon4 and Francis Bach1,2

1INRIA, 2ENS-PSL Paris, 3CNRS, 4Centrale-Supélec

Context. Recent theory shows that training wide neural net-
works amounts to doing regression with a positive-definite kernel.

Contributions. This lazy training phenomenon:
• is not intrinsically due to width but to a degenerate relative scale
→depends on early stopping, initialization and normalization

• removes some benefits of depth and may hinder generalization

Abstract

Setting. Adjust parameters of a differentiable model h : Rp → F
by minimizing a loss R : F → R+ using gradient flow on the objective

F (w) = R(αh(w))/α2.

•F is a Hilbert space of predictors, R typically the empirical or popu-
lation risk, h typically a neural network
•α > 0 is a scale, often implicitly present
•gradient flows approximate (stochastic, accelerated) gradient descent

Training paths. For initialization w0 and stopping time T , let
• (wα(t))t∈[0,T ] be the original optimization path
• (w̄α(t))t∈[0,T ] be the tangent optimization path, for the tangent model

h̄(w) = h(w0) + Dh(w0)(w − w0)

S
p
ac

e
R

p
of

p
ar

am
et

er
s

S
p
ac

e
F

of
p
re

d
ic

to
rs

×

•
•

w0

W0

h(W0)

•
×

•

h(w0)

h̄(W0)

h

h̄

When the original and tangent optimization paths are close

Lazy Training (definition)

Consequences. Lazy training is a type of implicit bias for gradi-
ent descent that leads to strong guarantees:
•on optimization speed (theory of convex optimization)
•on generalization (theory of kernel regression)

Lazy Training

If h(w0) = 0 and R potentially non-convex then for any T > 0,

lim
α→∞

sup
t∈[0,T ]

‖αh(wα(t))− αh̄(w̄α(t))‖ = 0.

Finite horizon

If h(w0) = 0, and R is strongly convex, then

lim
α→∞

sup
t>0
‖αh(wα(t))− αh̄(w̄α(t))‖ = 0.

Infinite horizon

•over-parameterization is not needed
• see paper for precise statements

Lazy Training Theorems

A sufficient criterion. For the square loss R(y) = 1
2‖y − y?‖2

and α = 1, the relative difference ∆ := ‖h(w(t)) − h̄(w̄(t))‖/‖y? −
h(w0)‖ is controlled by

∆ . t̃2 · κh(w0) where κh(w0) :=
‖h(w0)− y?‖‖D2h(w0)‖

‖Dh(w0)‖2

where t̃ = t‖Dh(w0)‖2 is the normalized time (≈ iteration number).

For α > 0, one has καh(w0) . ‖h(w0)− y?/α‖
→ lazy if h(w0) small and α large

Case 1: Rescaled models

If h(λw) = λqh(w), one has κh(λw0) . ‖h(w0)− y?/λq‖
→ lazy if h(w0) small and λ large

Case 2: Homogeneous models

If hm(w) = α
∑m

i=1 φ(θi) where w = (θ1, . . . , θm) are i.i.d. and
satisfy Eφ(θi) = 0 (two-layer neural network), then

κhm(w0) . m−1/2 + (αm)−1

→ lazy if limm→∞αm =∞ (e.g. α = 1/
√
m)

→ can be extended to deep networks (Jacot et al.)

Case 3: Wide neural networks

When does it occur?

Synthetic experiments. Two-layer ReLU neural network,
square loss, initialized with variance τ , best predictor has 3 neurons.

circle of radius 1
gradient flow (+)
gradient flow (-)

Lazy Training (τ = 0.1) Non-Lazy Training (τ = 2)

Trajectory of each “hidden” neuron during training (2-D input)

10 2 10 1 100 101

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Te
st

 lo
ss

end of training
best throughout training

Over-parameterized
(GD on train loss until 0 loss)

10 2 10 1 100 101
0

1

2

3

Po
pu

la
tio

n 
lo

ss
 a

t c
on

ve
rg

en
ce

not yet converged

Under-parameterized
(SGD on population loss)

Impact of laziness on performance (100-D input)

Image recognition. Does lazy training explain deep learning?

101 103 105 107

 (scale of the model)

60

70

80

90

100

%

train accuracy
test accuracy
stability of activations

Effect on laziness (VGG11 model)

Model Train acc. Test acc.
ResNet wide, linearized 55.0 56.7
VGG-11 wide, linearized 61.0 61.7
Prior features (Oyallon et al.) - 82.3
Random features (Recht et al.) - 84.2
VGG-11 wide, standard 99.9 89.7
ResNet wide, standard 99.4 91.0

Linear vs. lazy vs. deep models

Theoretical arguments. Neural networks can be superior to
kernel/fixed features methods, thanks to their adaptivity (Bach 2017).

Is it desirable in practice?

• Jacot et al., Neural Tangent Kernel: Convergence and Generalization in Neural Networks. 2018.
•Du et al., Gradient Descent Provably Optimizes Over-parameterized Neural Networks. 2018.
• Bach. Breaking the Curse of Dimensionality with Convex Neural Networks). 2017.

Main references


