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Abstract

Context. Recent theory shows that training wide neural net-
works amounts to doing regression with a positive-definite kernel.

Contributions.
e is not intrinsically due to width but to a degenerate relative scale

This lazy training phenomenon:

— depends on early stopping, initialization and normalization

e removes some benefits of depth and may hinder generalization

Lazy Training

Setting. Adjust parameters of a differentiable model i : R? — F
by minimizing a loss R : / — R, using gradient flow on the objective

F(w) = R(ah(w))/a”.

e f is a Hilbert space of predictors, R typically the empirical or popu-
lation risk, h typically a neural network

o > () is a scale, often implicitly present

e gradient flows approximate (stochastic, accelerated) gradient descent

Training paths.

For initialization wy and stopping time 1, let

® (W, (1))t be the original optimization path

® (w0, (t))iepp. ) be the tangent optimization path, for the tangent model

h(w) = h(wy) + Dh{wy)(w — wy)
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Lazy Training (definition)

When the original and tangent optimization paths are close

Consequences.
ent descent that leads to strong guarantees:

Lazy training is a type of implicit bias for gradi-

e on optimization speed (theory of convex optimization)

e on generalization (theory of kernel regression)

Lazy Training Theorems
Finite horizon

If h(wy) = 0 and R potentially non-convex then for any T" > 0,

lim sup [[oh(wa(t)) — ah(wa(t))]| = 0.

700 ¢[0,T]

Infinite horizon

If h(wy) =0, and R is strongly convex, then

lim sup [|ah(wa(t)) — ah(w.(t))]] = 0.

® over-parameterization is not needed

@ see paper for precise statements

When does it occur?

A sufficient criterion. For the square loss R(y) = 2|y — y*||”
and o = 1, the relative difference A = ||h(w(t)) — h(w())||/|ly* —

h(wy)|| is controlled by
lh(ws) — Il Dh(w)]
R VS TACTOIE

A <t - ky(wy)  where

where t = t||Dh(wy)||? is the normalized time (= iteration number).

Case 1: Rescaled models

For o > 0, one has kqn(wy) S ||h(wy) — y*/al

— lazy if h(wy) small and « large

Case 2: Homogeneous models

If h(Aw) = Ah(w), one has kp(Awy) S ||[h(wy) — y*/ANY|
— lazy if h(wy) small and A large

Case 3: Wide neural networks

If hpn(w) = > " d(0;) where w = (04, ...,0,,) are i.i.d. and
satisfy [E@(60;) = O (two-layer neural network), then

K, (wy) < m =% 4 (ozm)_1

— lazy if lim,, oo am = oo (e.g. a = 1/4/m)
— can be extended to deep networks (Jacot et al.)

Is it desirable in practice?

Synthetic experiments. Two-layer RelLU neural network,

square loss, initialized with variance 7, best predictor has 3 neurons.
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Lazy Training (7 = 0.1) Non-Lazy Training (7 = 2)

Trajectory of each “hidden” neuron during training (2-D input)
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Under-parameterized
(SGD on population loss)

Over-parameterized
(GD on train loss until 0 loss)

Impact of laziness on performance (100-D input)

Image recognition. Does lazy training explain deep learning?
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/I Model Train acc. Test acc.
20 /I ResNet wide, linearized 55.0 56.7
ool \o/ - trainaccuracy VGG-11 wide, linearized 61.0  61.7

- test accuracy

Prior features (Oyallon et al.) - 82.3

7090 ~— stability of activations Random features (Recht et al.) - 84.2
I’ VGG-11 wide, standard 99.9 89.7
607 4 ResNet wide, standard 90.4 91.0
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a (scale of the model)

Effect on laziness (VGG11 model)  Linear vs. lazy vs. deep models

Theoretical arguments. Neural networks can be superior to
kernel /fixed features methods, thanks to their adaptivity (Bach 2017).
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